
Permission to make digital or hard copies of part or all of this work for personal or classroom use is 
granted without fee provided that copies are not made or distributed for commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the Owner/Author. 
SIGGRAPH 2013, July 21 – 25, 2013, Anaheim, California. 
2013 Copyright held by the Owner/Author. 
ACM 978-1-4503-2261-4/13/07 

Raycast based auto-rigging method for humanoid meshes

Romain Lopez, Christophe Poirel of ESGI Paris

(a) (b) (c) (d)

Figure 1: (a) Mesh ”silhouette”, (b) Silhouette outline, (c) Raycasting inside a limb slice, (d) Arm slices centers.

1 Introduction

In character animation, skeletons are used to animate meshes.
Those skeletons are inserted inside the mesh after being drawn.
This insertion, called rigging, is time consuming since it must be
done for each mesh.

Autorigging is the automation of this process. In this work, we
propose an automation which requires no human intervention and
will identify and place each bone of the skeleton inside a mesh.

Other works were done on the same subject : Pinocchio which uses
mesh discretization [Baran 2007] and Frankenrigs which is based
on a body parts database [Miller 2010] .

2 Body map

In the first part, we will try to build a body map : we will scan the
mesh and try to identify all the limbs. The limbs we are looking for
are based on the bones we have in the skeleton : arms, legs, body
and head.

The first step is to reduce the complexity of our 3D point cloud (the
mesh). In order to do so, we are going to make a serie of frontal
ray casts. Each raycast will be sent with a regular spacing. We will
keep all intersection points with the mesh and set a common depth
for them. By the end of this first step, we will then have what we
called the ”silhouette” of the mesh (Figure 1a), which looks like
a 2D point cloud projection, but with a regular spacing between
each point. Since we know the spacing between each point, we can
easily keep only the outline points of the cloud (Figure 1b). The
result still is recognizable as a human shape, and less complex than
the 3D point cloud.

What we want to do next is to set these points in a way that will
allow the program to read the silhouette. Just like if you started to
draw this figure with a pen, you would for example start by drawing
one point in the head, then the next point close to it... until you go
back to the first point. You will then have a navigation path, which
starts at the first point you drew and goes all around the silhouette.

We will be building three paths, one arch that goes inside the legs,
two others that go on the side of the mesh. This can be done, be-
cause we used a regular spacing, and we know the distance between
two neighbor points. Using these tracks and knowing the standard
rigging positions, we will be able to determine each limb.

We will be doing a specific algorithm for the legs, arms, body and
head. At the end of the first part, we will have our body map ready.

3 Bone placement

The bone placement consists in finding the best location for each
joint of the skeleton. We we will use the body map to find entry
points in the mesh for each limb. These entry points will be used as
start locations and stop locations for the following algorithm.

We start with the arm entry point. The armpit height will be the
height limit, i.e. the stop condition of the algorithm. From the entry
point inside the arm, we do a 360 degree raycast in the horizontal
plane (Figure 1c). These rays will hit the mesh from inside and
we keep the closest intersection points. A polygon is made from
these intersection points. It represents a simplified slice of the arm.
Now the goal is to find the center of this slice. To do so, we will
find the barycenter of the polygon by applying a weight on each
point depending on the distance to its two neighbors. This way the
barycenter’s position will not be affected by the local points den-
sity. From this barycenter, we will go down the arm. Again, at each
slice, we do a raycast to find the next barycenter. The algorithm
stops when the next point is outside the mesh. Then we start again
at the arm entry point, but this time we go upward. The algorithm
stops when it reaches the armpit height (Figure 1d). The barycen-
ters found at each step are candidates for the joint positions. We use
other entry points from the body map to find the legs and the spine.

The last step is to position the armature bones. From the barycen-
ters, we must find the best candidates for the different joints loca-
tions.To do so, we use the armature skeleton information. For each
bone, we take the ratio between its length and the total length of the
limb bones. Then, inside the mesh, we sum the distance between
each barycenter to get the total length of the correponding limb.
Now we can use the bones ratios to find which barycenters will be
the locations of the joints.

References

BARAN, I. AND POPOVIC, J., 2007. Automatic rigging and ani-
mation of 3d character. Proceedings of ACM SIGGRAPH 2007.

MILLER, C., ARIKAN, O., AND FUSSELL, D., 2010. Frankenrigs:
building character rigs from multiple sources. Proceedings of
ACM SIGGRAPH 2010.


